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A COMPUTATIONAL METHOD FOR THE 
HYDRODYNAMICS OF FRACTURED-POROUS MEDIA 

G. M. GRAND1 AND J. C. FERRERI* 
CNEA, Gerencia Prot. Rad. y Seguridad, Av. Libertador 8250, 1429 Buenos Aires, Argentina 

SUMMARY 
A numerical method based on the boundary-fitted finite difference method (BFDM) is presented in this 
paper. The boundaries are external (the boundary of the physical domain) and internal (which corresponds 
to the fracture network). The difference between this approach and the usual one lies in the inclusion of 
discrete fractures in the volume that represents the porous medium. The numerical model has been used in 
the prediction of the flow pattern in several internationally recognized verification cases and applied to the 
solution of hypothetical problems of interest to us in the field of nuclear waste repository modelling. The 
results obtained show that the numerical approach considered gives accurate and reliable predictions of the 
hydrodynamics of fractured-porous media, thus justifying its use for the above-mentioned studies. 
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INTRODUCTION 

The prediction of the flow pattern of buoyancy- and pressure-driven flows in fractured-porous 
media has important technological applications. Geothermal and petroleum reservoir engineer- 
ing, the prediction of the impact of nuclear waste repository emplacements and many other 
applications justify the ever-growing interest in this subject. 

This paper resulted from the authors’ interest in the field of nuclear waste repository 
emplacements.’ - 4  The accurate prediction of the hydrodynamics of such repositories is of 
primary importance for the assessment of the radiological safety and subsequent licensing of 
those facilities. The present paper is a full description of the algorithms used to solve the problems 
of fluid flow, heat transfer and radionuclide migration in a fractured-porous medium. 

The conceptual model of the flow and heat transfer in a porous-fractured medium is considered 
now. A typical structure of a granitic mass, suitable for use as a potential site for repository 
emplacement, may be viewed as large blocks of quasi-homogeneous rock surrounded and/or 
intersected by fractured zones. The influence of microfractures (included in the otherwise 
homogeneous rock) and macrofractures (or discrete fractures), mainly responsible for the flow 
pattern configuration, may be described by different approximations. 

Continuum approximation 

The equivalent porous medium and the double-porosity method are examples of this approach. 
In the equivalent porous medium approximation the rock mass including the fractured zones is 
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described on a large scale, so that properties (porosity, permeability) and parameters (temper- 
ature, pressure, velocity) are averaged in large blocks. In this way an idealized equivalent porous 
medium replaces the actual one. The equivalent medium is non-isotropic and the average 
properties depend not only on the fluid and rock properties but also on the boundary conditions. 
In Reference 5 a technique was developed to obtain average properties for the representation of 
fractured-porous media. The equivalent porous medium gives good results only for a global-scale 
model without much detail. In the double-porosity approximation the flow region is idealized as 
two interacting media: one representing the fracture system and the other representing the porous 
medium. This system can be described by two sets of conservation equations, one for each 
medium. The equations are linked by non-linear source terms depending on the potential in each 
medium. This model allows easy analytical treatment of anisotropic problems and the bulk 
properties do not depend on the boundary conditions. On the other hand, as Narasimhad 
pointed out, the multivaiued fluid flow field may not be the best input to solve the radionuclide 
transport equation. 

Discrete approximation 

The rock matrix is idealized as large blocks of impermeable material surrounded by a network 
of discrete fractures where the fluid flows. It is similar to a net of conduits and does not take into 
account the fluid flow in the porous medium. See Reference 7 and the references cited therein as 
an example of this approach. 

Equivalent porous medium and discrete fracture approximation 

This model combines the continuous approximation for the porous rock matrix and the 
discrete approximation for the fracture network. The properties in the bulk media are obtained 
by averages. This task is now easily performed because the anisotropies of the actual media are 
taken into account by the fracture network. The integral formulation of the mass conservation 
equation avoids the source terms and the internal boundary conditions between the fractures and 
the porous medium. The integral finite difference method of Narasimhad. * and the finite element 
method developed by Baca et aL9 belong to this approach. This approximation is used as the 
conceptual model in the present work. 

In the following section the governing equations in the physical domain are introduced. Later 
on, the basis of the BFDM is presented in order to derive the governing equations in the 
computational domain. The discretization of the resulting equations is also shown, along with 
some computational details. Finally, several examples of verification and particular applications 
are shown. 

GOVERNING EQUATIONS 

The equations that govern the flow in a rock traversed by discrete fractures are considered in this 
section. The validity of Darcy’s and Boussinessq’s approximations to the Navier-Stokes equa- 
tions is accepted for the flow, both in the equivalent porous medium and in the discrete fractures. 
The equations are: 

(i) the momentum equations in the porous medium, 
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(ii) the momentum equations in the fractures, 

kf 
Uf = - - [(VP . Z)Z + /9(g * z ) ~ A  T ]  ; 

V 

(iii) the mass conservation equation in a volume of porous-fractured rock, 

V - ( pu) dV+ p(uf * n) dA = 0; s Vf, ex, 

(iv) the energy conservation equation in a volume of porous-fractured rock: 

8T 
( PC)" - + (pc)" u * VT= V . (T'VT) + Q; 

at 

(v) the radionuclide transport equation in a volume of porous-fractured rock: 

In equations (1)-(5) the meaning of the variables is as follows: 
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specific heat capacity 
radionuclide concentration 
permeability 
diffusion coefficient 
acceleration due to gravity 
(pressure - hydrostatic head)/p, 
thermal heat source 
retention factor for a radionuclide 
specific storage 
temperature 
volume-averaged fluid velocity 
fluid velocity in the discrete fractures 
fluid thermal expansion coefficient 
porosity 
thermal conductivity 
radionuclide decay constant 
kinematic viscosity 
density 
nabla operator 
unit vector in the direction of a fracture 
unit vector normal to a volume surface 
volume boundary 
control volume, 

263 

(3) 

(4) 



264 G. M. GRAND1 AND J. C. FERRERI 

The subscripts and superscripts represent: 

P porous medium 
f fracture 
fl fluid 
0 
ext 

reference value for Boussinessq's expansion 
fracture surface on the faces of the control volume. 

In equations (1)-(5) it is assumed that the fluid properties are not temperature-dependent. The 
extension to consider variable properties is straightforward. 

The determination of k, for the porous matrix is simple because it is considered as data. The 
corresponding value for the fractures is obtained by assuming that the flow satisfies the Poiseuille 
flow law (cubic law for flow rates). This in turn implies that 

kf=  b2/12, 

where b is the aperture of the fracture. In the codes the fracture permeability is usually made to 
follow this law. In some other cases the fractures are considered to be filled with a porous material 
of a given permeability (linear law for flow rates). 

The surface integrals in equations (3)-(5) must be interpreted as measuring the contribution of 
the flow along the fractures to the balance of a parameter. The surface 8 Vext is the fraction of the 
total volume surface corresponding to the fracture cross-sectional area and does not include the 
fracture within the control volume. Equation (3) is valid for a saturated, fractured-porous, 
consolidating medium. However, in most cases the rock can be considered as non-deformable 
and the fluid as incompressible. This is easily done by setting s' and Sp equal to zero. Equation (4) 
implies thermal equilibrium between the rock and the fluid and neglect of the advective terms. 
These facts are a limitation of the present analysis. However, if the Rayleigh number is not very 
high, they do not have any practical consequence, even for the fractures." Equation (5 )  implies 
(a) saturation of the porous medium and the fractures, (b) that the solute is inert (this means that it 
does not affect the physical properties of the fluid) and (c) that the rock matrix is non-deformable. 

NUMERICAL METHOD 

The numerical solution of equations (1)-(5) is found by means of the BFDM. A detailed 
description of the method can be found, for example, in Reference 11. The transformed equations 
for two-dimensional isothermal flow are given in Reference 3. Since the present approach is 
somewhat different from the usual ones in the BFDM, some algebraic details will be shown in this 
section, but for the sake of brevity only in two space dimensions. The extension to three 
dimensions is straightforward. 

The arbitrary physical domain k(x, y) is transformed into a regular one denoted by L'(U, V) 
(this will be called the computational domain from now on) in order to solve the governing 
equations (1)-(5) by means of the BFDM. The co-ordinates in the computational plane are 

U =  U(X, Y ) ,  V =  V(x, y) . (6) 

x = X ( U ,  v), y=  Y(U,  V ) .  (7) 

If the Jacobian of the transformation does not vanish the transformation can be inverted 

Figure 1 shows a cell belonging to a hypothetical grid and illustrates the location of the 
variables. As can be seen, velocities are located at the cell comers. Pressure, temperature and 
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X 
Figure 1. Location of the variables in a computational cell (a) 2D cell; (b) 3D cell 

scalar concentration are located at the cell centroid. D i , j ,  the discrete analogue of the flow 
divergence, is also located at the cell centroid. 

Two paths crossing at the centroid of the cell, representing one-dimensional links between 
pressure nodes, are also shown in Figure l(a). These paths are the discrete images of the fractures 
in the rock. Thus the representation of the structure of the rock consists of large blocks of an 
equivalent, homogeneous, porous continuum surrounded by discrete one-dimensional fractures. 
The velocities along the fractures are called uf and uf respectively. 

It is interesting to point out that this particular centring of the variables forces the fractures to 
be coincident with lines joining the centroids of the cells. Then the BFDM is used to fit ‘internal’ 
boundaries as well as external ones. Consequently, uf and of can be considered as the moduli of 
vectors tangent to the lines of constant values of the co-ordinate in the computational plane. The 
inclusion of the discrete fracture representation in the volume that represents the porous medium 
constitutes, to the authors’ knowledge, the difference between the usual approach and the present 
one. 

The integration domain is subdivided into a number of discrete cells such as that shown in 
Figure 1. The 1D paths representing the fractures are set logically to ‘on’ in order to include 
fractures crossing control volumes. In this way only those cells including fractures take into 
account the effects of the 1D paths. Otherwise they work as homogeneous volumes of porous 
media with the corresponding fracture parameters set to zero. 

In the 3D case the fractures are planes of varying aperture and two velocity components have 
been allowed for them, centred at the midpoints of the edges of the control volume. In addition, 
tubes connecting opposite face centroids are also considered. This in turn allows for a simple 
reduction from 3D to 2D flow descriptions. Figure l(b) shows this set of variables in a 3D 
representation. 
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Hydrodynamic problem (mass and momentum equations) 

tions (1)-(3) can be written as 
Considering the co-ordinate transformation (7), the momentum and mass conservation equa- 

ap 
V au u = -Ic. ( A u x  - + A m  

" (  V au 

"( V au 

u=-- -z!  AUY- ap +AVY &+flgAT), 

uf= -- EUU-+BS,AT), ap 

apuxm apuxm 
+BVX - (Sp g ) ( V -  V,)+ (9 g ) V,+ V [  x-.( BUX av aV 

av 
(10) 

apv>l ( au 
aPV + BUY __ + BVY ~ + pure be cos a, + pvfn b, cos a, - put, b, cos a, - Pofs b, cos a, = 0, 

where m= 1 for cylindrical co-ordinates and m=O for Cartesian co-ordinates. 
The various coefficients in equations (8)-( 10) measure the influence of the co-ordinate trans- 

formation upon the original equations. The coefficients AUX, etc. are calculated as corner- 
centred coefficients: 

AUX = U ,  = YJJ, A U U =  Uf + U,Z, 
AUY=U,=-X,/J,  AUV=U,V,+V,U,, 
AVX = V, = - Y,,/ J ,  AVU = AUV, 
AVY = V, = Xu/ J, AVV= Vz+ V,Z, 

where J is the Jacobian of the transformation, given by 

J = X, Y, - X, Y,,. 

The coefficients EUU, EVV, g,, and gu are calculated at the centre of the cell faces: 

EUU=(U, Vy- V, Uy)/J(AVV), 

FVV = ( U ,  V, - V, U,)/J(AUU), 

g.= -gV,/J(AVV), 9 u =  -S~, lJ(AUU),  

cosa=(u,v,- v,u,)/J(Auu)J(Avv), 

where A U U  and AVV are now appropriately averaged in the faces. The coefficients denoted by 
BUX, etc. have the same meaning as AUX, etc. and only differ in their location at the grid, 
representing the cell-centred transformation coefficients. 

The discrete versions of equations (8)-(10) are obtained by means of centred difference 
approximations in the computational plane, implying an appropriate averaging of the variables 
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in the cell. The discrete approximations are written as: 

(i) u-momentum equation (8a), 

A0ui,j=A,~i.j+A2~i-1,j+A3~i,j-1+A4~i-1,j-l, 
where 

Ao=l ,  
A1 =(kp/2p)(-AUXi, j- AVXi, j ) ,  

A2 =(kp/2p)( +AUXi, j -  AVXi, j), 
A3 =(kP/2p)(-AUX, j+AVXi, j), 
A, = (kP/2p)( + AUXi, j + AVXi, j); 

(ii) u-momentum equation (8b), 

(v) mass conservation equation (lo), 

b p i ,  j-E,P? j = D ,  j ,  

where 
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The different algorithms used to solve the difference equations (1 1)-( 15) are discussed below. 
First, the incompressible flow in a consolidated medium, i.e. incompressible flow in a non- 

deformable rock matrix, is considered. This implies that Sp and S' are set equal to zero. The flow 
is solved in terms of primitive variables (P, u, u, uf, uf) or in terms of the pressure (P) only. In both 
cases, iterative or direct solvers are used. 

The iterative algorithm, in primitive variables, is of the semi-implicit type. First, the energy 
equation (see next section) is advanced from time ndt to time (n + 1) 6t to produce the driving force 
in the momentum equations. The calculation follows with a guessed pressure field (taken as P"), 
giving approximate values for the velocities from the momentum equations (1 1)-(14). Then the 
following iterative method is applied. 

The discrete analogue of the cell divergence Di, is obtained (via equation (15a)). (i) 
(ii) The pressure in the cell is adjusted to bring the cell divergence to zero as follows: 

Pi,j=Pi,j+6Pi,j, 

where 

with 
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1 - 1  

+AVYi+l,j+AVXi,j+l+AVXi,j)) +---(EUUi, kf /v  b,cosa, 

+EUUi+,, jb,cosa,+FVVi, jb,cosa,+FVVi, j + l  b , c o ~ a , ) - ~ .  

Here o is an overrelaxation factor, set to 1-7 for this type of problems. 
(iii) The velocity components are modified accordingly with the new pressure field as follows: 

u!";+l!\+ 1 = @) 1, j+  1 + C(AUXi+ 1, j +  1 +AVXi+ 1, j+  I), 

ui+ ('+ I ,  j- - ~f!) 1, j+  C(AUXi+ 1, j-AVXi+ 1, j), 
u ( k $ l ) -  i, J + 1 -uI, (k) j+  1 + C( -AUXi, j+  1 +AVXi, j +  1 ), 

u"? i, I ') = UP\ + C( - AUXi, j - AVXi, j), 
u(k++l) -#) 
i+ 1, j + 1 - 1 + 1. j +  1 + C(AUYi + 1. j+  1 + AVYi + 1, j+ 1 1 9  

y(k i + + 1, 1) j - - vI+ (k) 1, j + C(AUYi + 1, j -AVYi + 1, j), 

u ( k $ l )  1, J +  1 - - vi, (k). J +  1 + C( -AUYi, j+ 1 +AVYi, j+  1 ), 

u!!; 
f i + l .  j - U f i + l ,  j + C t E U U i + l ,  j ,  

U ( k + l ) -  (k) - C E U U  . 

u$!,) :)1 = u!!! + + C , FVV I ., J+1 ,  . 

= u!!) + C( - AUY,, j - AVYi, j), 
u(k+ 1) - (k) 

ti, j - 4 i ,  j t i, J 9 

(k+.l)- (k) -C FVV. . 
ufi, j - h i ,  j f I. J 9 

where C and C, are defined as 

C=(kp/2)6Pi, j, Ct = k, bpi, j .  

(iv) Boundary conditions are appropriately applied after each iteration sweep. Steps (i)-(iv) are 

Such as presented, the iterative algorithm solves the Poisson equation for the pressure through 
the use of an intermediate variable (D) and provides a simultaneous adjustment of velocities. An 
alternative approach consists of solving the Poisson equation for the pressure directly. Its discrete 
version is 

repeated until a suitable norm for D,, is below a given tolerance. 

[FOP,, j + IF1 Pi - 1, j + Fz Pi + 1, j + E3 Pi, j- 1 + F4Pi, j +  1 + F5pi - 1, j- 1 + Esf'i+ 1. j +  1 

+ F6pi- 1, j +  1 f F6pi+ 1, j- 1 = F O q  j ,  (16) 
where 

Eo = k, V(2 AUU,, + 2 AVV,, j )  + kf (EUUi, b, cos a, + EUUi+ 1, be cos a, 

[F, = k, V [  - AUU,, + (AUi, + mx-"AUXi, j)/2 - kfEUUi, b, cos a,], 

Fz = k, V [  - AUU,. +( -AUi, j -  mx-"AUXi, j)/2- kfEUUi+ 1, b,cos a,], 

tF3 = k, V [  - AVV,. + (AV,, j)/2 - FVV,, b, cos as], 

F4 = k, V [  - AVV,, + (- AVi, j)/2 - kf FVV,, j +  b, cos a,], 

IF,= -IF,. 

+ FVV,, b, cos a, + FVV,, j +  b, cos a,), 

[Fs = - k, VAVVi. j/4, 
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This procedure was also implemented and the error of the computed solution is sometimes less 
sensitive to steep variations in pressure. 

The other algorithm implies the use of a direct solver in order to obtain a fully coupled solution 
of equations (1 1)-( 15). The equations are ordered by block, each one representing a com- 
putational cell. In each block the equations are ordered as follows: 

(i) u-momentum (from which u is obtained) 
(ii) continuity (from which u is obtained) 
(iii) u-momentum (from which P is obtained) 
(iv) uf-momentum (from which uf is obtained) 
(v) u,-momentum (from which uf is obtained). 

Boundary conditions are incorporated explicitly in the system of equations. 
The algebraic system of linear equations is solved with a library sparse matrix solver named 

MA28AD from the Harwell package,” which proved to be efficient in most cases. However, 
attention must be paid to the relative weight of the coefficients in order to obtain meaningful 
results. 

Different boundary conditions may be prescribed, namely: 

(i) inflow-utflow boundaries, with both rock and fracture fluid velocities specified 
(ii) free-slip boundaries, where the normal component of the velocity vector is null-in this 

case the velocity at the boundary is obtained from the velocity at an inner point as in 
Reference 11, i.e. 

where I and B represent the inner and boundary points respectively and n is the unit vector 
normal to the boundary 

uB = (u, - n)n- u, , 

(iii) boundaries with imposed pressure 
(iv) periodic boundaries, where the inflow and outflow are linked by periodicity. 

In the direct method the imposition of the boundary conditions also implies the reordering of 
equations in the cells adjacent to the physical boundaries (see Reference 13 for a complete 
description). For example, if the pressure is specified at a boundary, the equations are ordered as 
follows: 

(i) u-momentum (from which u is obtained) 
(ii) u-momentum (from which u is obtained) 
(iii) boundary condition (from which P is obtained) 
(iv) uf-momentum (from which ulf is obtained) 
(v) uf-momentum (from which u, is obtained). 

This is not the case with the iterative procedure. 
Both algorithms should be modified 14,15 in problems with large pressure gradients if a 

relatively coarse grid is used. The iterative algorithm is modified as follows. 

(i) The velocities in the rock and in the fractures are calculated via equations (11)-(14). 
(ii) The discrete analogue of the divergence Di, is calculated via equation (15a). 
(iii) Di, is redefined as 

Di, j = D ,  j + D h i ,  j ,  

where Dh i ,  is the divergence of the velocity field obtained from the velocities calculated 
with the discrete analogue of (1 1)-( 14) and a local semi-analytic distribution of pressure. 

(iv) Follow with the standard iteration. 
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As may be seen from the above description, the only difference consists of considering the 
known behaviour of the solution in the vicinity of the zones with steep gradients. It must be 
mentioned that this procedure of singularity extraction in a semi-implicit code is the only way the 
authors know to get a correct solution under such an approximation. 

In the case of a consolidating medium (compressible flow and/or deformable rock matrix), 
equations (1 1)-(14) are substituted into equation (15). Then the resulting parabolic equation for 
the pressure is solved. The equation obtained is similar to equation (16), except that Bo is modified 
as follows: 

IFo =(S, /6 t )  (V-  Vf ) + (&/st) Vf + k, V(2 AUUi, j + 2 AVVi, j~ 

+ kf(EUUi, b, cos a, + EUUi+ 1, be cos a, + FVV,, b, cos a, + FVV,, j +  b, cos a,), 

An implicit scheme (see below) is used because of the severe time restrictions imposed by the 
fracture parameters. A direct algorithm is implemented using the routine MA28AD. l2  The 
boundary conditions are explicitly incorporated into the system of equations. 

Thermal problem (energy equation) 

terms of the computational coordinate U and V as 
The energy conservation equation (4) is written using the co-ordinate transformation (7) in 

av 
aT 

+(AU+mAUXx-")- AVV -+ AUV - 

aT 
av " )  ( au 

aT 
( p ~ ) ~ ~ + ( p ~ ) "  u AUX-+AVX- + O  AUY-+AVY- 

aT [ ( au 
a2 T a2 T 
av auav au 

+ (AV + m AVX x-") av 
where 

A U  = uxx + uyy, AV = V,, + Vyy. 

The discrete version of equation (17) is obtained by means of centred differences in space: 

Go v,: + G 1 Ti - 1, j + G, Ti + 1, j + G 3 Ti, j - 1 + G4 Ti, j +  1 + G 5 Ti - 1, j - 1 + G 5 Ti + 1, j + 1 

+ G6 Ti - 1, j +  1 + G 6  Ti+ 1, j -  1 = G7 r, j + G 8 ,  (18) 
where 

G~ = ( pC)P/st + r y 2  AUU,, + 2 AVV,, j ) ,  

6, =rp[-AUUi, ,+(AU,, j+mx-"AUXi, j)/21, 

G2=rp[-AUUi, j+(-AUi, j-mx-"AUXi, j)/21, 

6 3  =rp[ - AVVi, j + (AVi, jY21, 
G4 = r P [  - AVVI, j + (- AV,, j)/2], 

G 5 = - TP AUVi, j/4, 

6 6 = - 6 5 ,  

6 7  = ( p C ) P / k  

638 = Q. 
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As it stands, equation (18) may be solved by means of explicit or implicit methods. Numerically, 
the explicit option consists of considering all the terms on the LHS of the equation evaluated at 
t = nAt. Correspondingly, the implicit option (really a fully implicit one) consists of evaluating all 
the terms on the LHS of the equation at t = ( n +  1)At. 

The presence of concentrated heat sources introduces some difficulties for the numerical 
solution of (18). In practice, the approach described in Reference 1 was adopted. These sources 
can be adequately treated with coarse grids if the solution to the problem 

is obtained from 

where IL is the differential operator representing the energy equation, Q is the concentrated heat 
source, [Lh is the discrete version of 8. and S is the analytical solution to the problem 

in the neighbourhood of the heat source. 
Equation (17) is written in a numerically non-conservative form. Its use to treat heat sources 

generates increasing errors as the calculation proceeds. In Reference 16 it is shown that these 
errors are due to the grid non-uniformity, so a fully numerically conservative scheme is used for 
distributed sources. Energy equation (4) is integrated in a computational cell using the divergence 
theorem and the co-ordinate transformation (7). The resulting equation is written as 

( p q ( : ) ( ~ ) " ( J ) , r . d [ (  au (g)AUU+(;)AUV)(J)x"] 

+T.d[ aV (( g ) A V U + (  ~ ) A V V ) ( J ) x " ] + ( Q ) ( x " ) (  J) .  

(19) 
In equation (19) the terms in angle brackets represent an appropriate average at each cell face. 

The discrete version of equation (19) is obtained using centred finite differences and appropriate 
averages at the faces. It is 

W, T',: + W 1 Ti - 1, j + W2 Ti + 1, j + W 3 Ti, j- 1 - W 4  Ti, j +  1 + W 5 Ti - 1, j- 1 + W, Ti + 1, j+ 1 

+ W 7 Ti- I, j +  1 + W, Ti + I, j- 1 = W, C, j + W 10, (20) 
where 

W,= [(pc)P/dt]x~J,+ P((AUU Jx"'),+ (AUU Jx"),+ (AVV Jx"),+ (AVV Jx'")~), 

W, =TP[-(AUU JX"),+(AVU JX"),/~+(AVU J X ~ ) , / ~ I ,  

W2 =Tp[ - (AUU Jx"),- (AVU Jx"), /~-  (AVU Jxm),/4], 

W3=TP[-(AVV Jx"),+(AVU Jxm),/4+(AVU Jx"),/~], 

W4=rP[-(AVV Jx"),-(AVU Jxm),/4-(AVU Jxm),/4], 

W5 =TP[(AUV Jx"),/~+ (AVU Jxm),/4], 

W, = Tp[ - (AUV Jx"),/4- (AVU Jx"),/4], 

W, = rp[ (AUV Jx"),/~- ( AVU Jx"),/~], 
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Radionuclide transport problem (passiue scalar transport) 

The radionuclide transport equation (5 )  is written in terms of computational co-ordinates, via 
equations (7), as follows: 

av 
ac 

av ") ( au 
ac ( 4 R P  g) (V- V,)+ ( R' g) Vf + Vu ( BUX E+BVX - + Vv BUY -+ BVY - 

ac 
a p  auav au + (BU + m BUX x-"') - ---+BUV - a2c a2c azc 

ac ac 
av ") ( au av +(BV+m BVX x-") - + R, EUU, - b,cosa,+ FVV, - b, cosa, 

av 
ac 
au -A[#RP(V- Vf)+RfVf]. 

The discrete version of equation (21) is obtained using centred differences; then 
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After the thermal and hydrodynamic problems are advanced in time, equation (22) is solved 
using an implicit scheme. The boundary conditions, namely specified concentrations or specified 
mass fluxes, are explicitly incorporated. 

RESULTS 

The algorithms described above have been applied to the prediction of many cases of interest to 
us,13 giving support to the accuracy of the analysis. The most significant examples are sum- 
marized in this section. 

The first case4 is a calibration example of the 3D code consisting of the flow driven by an 
imposed geothermal gradient towards a disc-shaped horizontal fracture. The fracture is con- 
nected to the surface by a vertical rectangular fracture. This situation is sketched in Figure 2 and 
was first studied by Wang et al.” However, those authors considered that the central part of the 
disc-shaped fracture represented a disc repository with a given heat power, and considered a 1D 
approximate analysis which is simulated with the grid shown in the figure. It consists of 31 x 30 
nodes in the horizontal plane and five nodes along the vertical direction. The difference in node 
number on the horizontal plane is due to the variable centring and the form in which the vertical 
fracture is represented. The dimensions of the scenario are also shown in Figure2. The 
permeability of the fracture is k,= lo-’ mz and the aperture of the fracture is b= m. Since 
the model considers a porous-fractured rock, this situation can be modelled if the corresponding 
permeability of the rock matrix is set very much lower than that for the fractures (k,  = m2 is 
used). The boundary conditions were set as follows: 

(i) homogeneous medium-zero velocity on all boundaries 
(ii) fracture system-constant pressure at the top boundary and free-slip boundaries at the disc 

perimeter. 

The fluid velocity in the vertical fracture, imposing a uniform temperature gradient, compares 
within 8% with the results from the 1D analysis of Wang et al. for the same conditions. 

I‘ 

Figure 2. Natural convection flow from a horizontal disc-shaped fracture towards a vertical one: (a) problem definition 
and constants (W=780 m, D=987 m, L =  5000 m, R =  1500 m, k,= loT9 m2); (b) partial view of the 3D grid (31 x 30 x 5 

nodes) 
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The second set4 of calculations consists of the prediction of three benchmark problems of the 
HYDROCOIN project," of interest in the case of crystalline rocks. The first is the prediction of 
the transient flow from a borehole in a consolidating porous medium (case 1, level 1). Figure 3 
shows a sketch of the problem and its boundary conditions, namely: 

(i) impermeable walls at the top and bottom boundaries 
(ii) specified pressure (P = 0) at the right boundary 
(iii) specified pressure at the left boundary according to the law 

P (  t ) =  1 -e-('l0'l) (t in seconds). 

////////I 

Figure 3. Flow from a borehole in a consolidating porous soil with a fracture in the bottom boundary HYDROCOIN 
case 1, level 1 (adapted from Reference 18) 

: 
i 
; .P. 

a 
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7 7  

d 3  1s. 

TINS ( I )  

Figure 4. Flow from a borehole in consolidating porous soil. Solution for the time-dependent hydraulic head. 
HYDROCOIN problem 1, level 1. Maximum error 2% at R = 5 m 
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The hydraulic conductivities are K, = 10- m s- ' and K, = m s- ' for the homogeneous 
rock and the fracture respectively. The corresponding specific storativities are Sp = m-' and 
s'= m- l respectively. Figure 4 shows the results using a grid of 22 x 24 nodes compared 
with the analytical solution.'s The maximum error does not exceed 2%. 

The second case consists of the predictions of the steady flow in a rock mass intersected by two 
permeable fractured zones (case 2, level 1).l8 Figure 5 shows the physical domain and the 
grid considered (35 x 28 nodes). The hydraulic conductivities were K,= ms-' and 
K, = m s- for the rock and the fractured zones respectively; the widths of the fractured 
zones were b = 15 m (A-A) and b= 10 m (B-B). For the top boundary (ground surface) the 
boundary conditions were P = gz. Water-impervious vertical and bottom boundaries were 
assumed. The pressure profiles at different depths (z=O, -200, -400, -600, -800) are 
compared with the proposed benchmark solution.'8 Figure 6 shows the pressure distribution at z 
= -400 m. The error does not exceed 23% in all cases. Errors decreased smoothly with 
increasing discretization. Figure 7 shows a vector plot of the steady state flow field. 

The next case consists of the prediction of the thermal convection in a saturated porous 
medium driven by a spherical heat source (case 4, level l).l8 The medium is homogeneous and 
isotropic. The heat source is spatially uniform and decays with time according to an exponential 
law. The parameters are 

sphere radius 250 m 
initial power 10 MW 
decay constant 7.3215 x 1O'O s - '  
permeability m2 
rock density 2600 kgm-3 
heat capacity 

A 2D code using axisymmetric grids is employed. The upper half of the grid is shown in 
Figure 8. The analytical solution is imposed at all boundaries, except at the symmetry edge. 
Figure 9 shows the time-dependent temperature along the vertical centreline. The maximum 
errors in temperature and pressure do not exceed 5% (see Figure 10). 

879 J kg-' K-'  . 

1000 rn 5 0 0  m- 
1600 m 

I 

(a) (b) 

Figure 5. Steady state flow in a rock mass intersected by two fractured zones. HYDROCOIN problem 2, level 1. 
(a) Problem definition (adapted from Reference 18); (b) 2D grid of 35 x 28 nodes 
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1 
Figure 6. Steady state flow in a rock mass intersected by two fractured zones. HYDROCOIN problem 2, level 1. 

Hydraulic head distribution at z =  -400 m. Maximum error 25% 

........................... ........................... .......... *..*..<....I.. . . .  ............................ .................... .”. . . . .  . . . . . . . . . .  *2-**,.*.. . . . .  . . . , , , s . > * - . w v , Y  L . ” 

Figure 7. Steady state flow in a rock mass intersected by two fractured zones. HYDROCOIN problem 2, level 1. Fluid 
flow vector plot 

The next example refers to flow past an isolated fracture and was taken from Reference 9. It 
consists of the prediction of the flow in a homogeneous porous medium with an isolated fracture 
parallel to the velocity field at an infinite distance. Figure 1 l(a) shows the physical domain. This 
case is appropriate to illustrate a typical configuration of 1D paths in an otherwise continuous 
medium. Figure 1 l(b) shows a partial view of the grid used to solve the problem, The results are 
obtained with a grid of 25 x 14 nodes. Boundary conditions are imposed at infinity as given by the 
analytical solution in Reference 19. It is interesting to point out that the grid is very coarse so the 
solution is obtained after applying the technique of singularity extraction mentioned before. The 
permeabilities are k= 10- l 5  mz and kf= lo-’ mz for the homogeneous rock and the fracture 
respectively. The maximum aperture of the fracture is 0.01 m. Figure lqa )  shows a vector plot of 
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Figure 8. Transient thermal convection in a saturated porous medium. HYDROCOIN problem 4, level 1. Upper half of 
the grid (16 x 31 nodes) 

I / 

+I 
lbl 1ItI 

11R (z-3  

Figure 9. Transient thermal convection in a saturated porous medium. HYDROCOIN problem 4, level 1. Time- 
dependent temperature rise along the vertical centreline 

the resulting flow field. The results obtained compare reasonably well with the analytical ones (see 
Figure 12(b)). Errors are of the order of 9% in the immediate vicinity of the fracture and tend to 
zero towards the limits of the domain. 

The next case4 considers the results of Tang et U I . , ~ ~  who studied the influence of a porous 
matrix on the diffusion of a radioactive tracer. The boundary conditions (see Figure 13) are such 
that flow and advection occur along the discrete fracture. Only molecular diffusion is allowed in 
the rock matrix. The geometry and dimensions are shown in Figure 13. The grid employed has 
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1 5L IL l i  78 
llK 191 

Figure 10. Transient thermal convection in a saturated porous medium. HYDROCOIN problem 4, level 1. Time 
evolution of the maximum errors: temperature, 5.0%; pressure 2.5% 

Figure 11. Steady state fluid flow in a porous medium with a single fracture embedded in the centre of the domain: 
(a) problem definition; (b) grid set-up 
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Figure 12. Steady state fluid flow in a porous medium with a single fracture embedded in the centre of the domain: 
(a) steady state velocity vector plot; (b) errors in the computed solution 

NO MASS FLUX 

POROUS MEDIUM 

FRACTURE 

Figure 13. Solute transport in a fractured-porous medium. Physical domain and boundary conditions (adapted from 
Reference 9) 

25 x 21 nodes. It is refined in the vicinity of the fracture and is almost uniform in the horizontal 
direction. The physical parameters are set to: 

Df=5.95 x m2s-'  
D,= 1.60 x lo-'' m2 s - '  
uf= 1.17 x lo-' ms-'  
b= m 
4 =0*01 
1 = 12.35 yr 
R = l .  
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Figure 14. Finite difference solution for the solute transport in a fractured-porous medium with concentration profiles 
along the fracture. Maximum error 2% 

Figure 14 shows a comparison of the results obtained for this restricted problem with the 
analytical solution.20 This graphic comparison indicates very good agreement between results. 

In the following examples, two hypothetical configurations of a high-level radioactive waste 
repository emplacement are considered. The repository is located at a depth of 500m. Its 
dimensions are 500 m by 500 m in the horizontal directions and about 10 m in the vertical 
direction. It can be modelled as a plane heat source.' Only the heat diffusion is considered in the 
porous medium. This approximation makes it possible to uncouple the hydrodynamic problem 
from the thermal one. The heat produced by the decay of the fission products varies according to 
the law' 

Q =QO(Ae-"+ Be-@'), 

where 

Q,=5.25 Wm-' 
A =0901 
u=2-373 x lO-'yr-' 
B = 0-099 
p= 1.610 x yr-'. 

The fluid flow boundary conditions are set as follows: 

(i) bottom boundary-impermeable, because the hydraulic conductivity at a depth greater 
than or equal to 1500 m is low enough to consider that no flux occurs 

(ii) left and right boundaries-impervious, because they are taken to be located below the 
valley or at the top of mountains, which nearly prevents the flow of water to the 
surrounding regions 

(iii) top boundary-the water table is taken to be coincident with the topography; this 
approximation is suitable for crystalline rocks and in this case the pressure can be imposed 
at the boundary. 
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The first case considers a repository located below a hill in the vicinity of a zone with two 
permeable fractured zones. The flow is induced not only by the thermal gradients but also by the 
topography. The dimensions of the integration domain are the same as in the third verification 
case (HYDROCOIN project level 1, case 2), except that the slopes of the hills are reduced from 
0.125 to 00125 m m- I .  In this way the hydraulic and thermal gradients have the same magnitude. 
A grid of 35 x 28 nodes similar to the one shown in Figure 5(b) is used in the calculations. Figure 
15(a) shows a vector plot of the velocity field before the repository is installed. In this case the flow 
is oriented towards the fractures, especially towards the one denoted by A-A. This fracture also 
acts as the collector of the fluid captured by the other fracture. Figure 15(b) shows a vector plot of 
the velocity field lo00 yr after the repository was installed. The flow pattern is not very much 
altered in the first 300 m, because the hydraulic gradients govern the flow. At a depth of 500 m the 

Figure 15. Repository located below a hill in the vicinity of two permeable fracture zones: (a) velocity vector plot before 
the repository is installed; (b) velocity vector plot loo0 yr after the repository is installed. 
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Figure 16. Repository located below a horizontal surface in the vicinity of a fracture: (a) integration domain; (b) velocity 
vector plot at t = loo0 yr 

thermal gradients impose a dramatic change on the flow pattern. The fluid is collected by fracture 
B-B. Moreover, the flow in fracture A-A is reversed and diverted to the collector fracture (B-B). 
The flow at depths greater than 600m is forced mainly by the thermal gradients and the 
configuration of the fractures is not very important. 

The scenario of the second application problem is shown in Figure lqa). The repository is 
located 500m below a horizontal surface. The domain of integration is 2000m along y per 
1OOOm along x. A vertical fracture, denoted by A-A, is located 200m from the centre of the 
repository. The aperture of the fracture is 10 m and its length is 200 m. The hydraulic conductivity 
of the rock at 500 m depth is K,= m s - l  and the hydraulic conductivity of the fracture is 
K,= ms-'. The hydraulic conductivity of the rock varies according to the law21 

& ( y )  = Kp(5~)e0'0092(500-y). 

As may be seen in Figure lqb), the flow field is strongly influenced by the fracture. In its 
absence the thermal gradients tend to generate recirculation cells. These cells disappeared 
completely owing to the presence of the fracture. Moreover, the fluid is collected from the right 
side of the top boundary, diverted to the repository and then collected by the fracture. Below 
900 m almost no flow exists because the permeability is too low. 

CONCLUSIONS 

A numerical method for the prediction of the hydrodynamics of fractured-porous media has been 
developed. The use of boundary-fitted grids allows the fitting of discrete fractures in the bulk of 
the porous matrix. These fractures usually define the flow pattern. The method covers 2D 
unsteady flow in natural circulation driven by thermal sources, consolidating media and three 
dimensions in steady problems. The discrete fractures are included in the control volumes as one- 
dimensional paths of variable aperture in 2D (curved surfaces in 3D). In this way the working 
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scenario may approximate conditions of interest in the modelling of flows in geological appli- 
cations. The techniques have been verified against previous results and benchmark examples. As a 
general comment on the accuracy of the results, it may be pointed out that the criterion was to 
obtain agreement between present and previous results to within a few per cent. The goal here was 
to show that this could be accomplished with a relatively coarse discretization. The effect of grid 
distortions has been considered previously16* 22 and is mainly responsible for the errors reported. 
However, in the case of regular grids, errors can be attributed to coarse discretization in zones of 
steep variation of the dependent variables. The results obtained agree with those proposed within 
a few per cent. The salient features of the method, namely fitting the discrete fractures and their 
inclusion in the control volumes, made it possible to develop an accurate prediction technique. 
Experimental results in our main field of interest are scarce but are beginning to emerge. The 
validation of the codes will be the subject of future work. 
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